From a prepared Flight Plan, enter & check all info to set up the FMC via the CDU.
V1 = 140-145kts
Vr = 145kts & 8*10deg on F/D initially & when air-born 15-17 deg on F/D
V2 = 150-155kts once we have Positive Rate of Climb call for Gear Up
V2+20 say 165kts
Set up Auto Pilot Mode Control for the flight. Note: VNAV & LNAV won’t work below 400′ RA. Auto Pilot CMD won’t work below 500′ RA
Pre-Take Off checks
Include Flaps 5, Trim for 6-8 degrees nose up, set both F/D On, set HDG to RWY HDG & check the Turn Rate, Set both COURSE knob to RWY HDG, set Cleared to ALT, V/S to CLB
When Cleared for Take Off & lined up on runway, arm A/T, set thrust to >40% & arm TOGA confirm Modes.
Confirm N1 & TOGA is showing on PFD & N1 Bugs are OK
Confirm No Flags, Airspeed Alive, 80kts x 3,
At V1 remove hand from throttle & apply back pressure for about 8-10deg F?D, speed will quickly get to VR now airborn rotate to about 15-17 deg.
Call Positive ROC & Gear Up.
Get to V2+20 asap.
Above 400′ RA set VNAV 1st, then LNAV & at 500′ RA, engage CMD, confirm Modes are lit up & holding course or heading
Above 1000′ AGL, flaps to 1 or 0 if now at or above 210kts.
Complete the after TKOF checks.
Speed should now show 250kts (to FL100)
CDU speeds for CLB
290/.74-.78
250/10000 reset Transition from 18000 to 10000 for AUST
220/5000
CDU speeds for DEC
from CRZ to FL240 800-1000fpm / Mach .74
then down to FL100 3500fmp / 290kts
by 3000′ AGL ~10 NM from airport, aim to be at 140kts
TYPICAL JET FLIGHT PLANNING
NM to descend to Target ALT@ 3 deg, FL330 to 3000′ at 10nm from suitable APR Point (add 10% , as prefer to have more time to control descent)
So, 30 x 3 = 90 + 10% = 99 NM or if all the way down, 33 x 3 = 99 NM + 10% say 110 NM out & say at 250kts, TOD would be 110/250*60 = 26.5mins, say 30mins
CRZ for short leg < 200nm use 10% of dist + 5 = FL eg 90nm *.1 = 9+5=FL140
diameter of standard turn 1% of airspeed say TAS 150kts dia = 1.5NM
bank angle for standard turn 10% of TAS + 5 say TAS 150x.1+5 = 20deg
ROD = Speed x 5 EG 250KTS x 5 = 1250fpm
Boeing 737–800 Flight Notes
Many factors affect flight planning and aircraft operation, including aircraft weight, weather, and runway surface. The recommended flight parameters listed below are intended to give approximations for flights at maximum takeoff or landing weight on a day with International Standard Atmosphere (ISA) conditions.
Important: These instructions are intended for use with Flight Simulator only and are no substitute for using the actual aircraft manual for real-world flight.
Note: As with all of the Flight Simulator aircraft, the V-speeds and checklists are located on the Kneeboard. To access the Kneeboard while flying, press SHIFT+F10, or on the Aircraft menu, click Kneeboard.
Note: All speeds given in Flight Notes are indicated airspeeds. If you’re using these speeds as reference, be sure that you select “Display Indicated Airspeed” in the Realism Settings dialog box. Speeds listed in the specifications table are shown as true airspeeds.
Note:For general information about flying jet aircraft in Flight Simulator, see Flying Jets.
By default, this aircraft has full fuel and payload. Depending on atmospheric conditions, altitude, and other factors, you will not get the same performance at gross weight that you would with a lighter load.
Required Runway Length
Takeoff: 9,000 feet (2,473 meters), flaps 5
Landing: 6,500 feet (1,981 meters), flaps 40
The length required for both takeoff and landing is a result of a number of factors, such as aircraft weight, altitude, headwind, use of flaps, and ambient temperature. The figures here are conservative and assume:
Weight: 174,200 pounds (79,010 kilograms)
Altitude: sea level
Wind: no headwind
Temperature: 15°C
Lower weights and temperatures will result in better performance, as will having a headwind component. Higher altitudes and temperatures will degrade performance.
Runway: hard surface
Engine Startup
The engines are running by default when you begin a flight. If you shut the engines down, it is possible to initiate an auto-startup sequence by pressing CTRL+E on your keyboard.
Taxiing
Idle thrust is adequate for taxiing under most conditions, but you’ll need a slightly higher thrust setting to get the aircraft rolling. Allow time for a response after each thrust change before changing the thrust setting again.
Normal straight taxi speed should not exceed 20 knots (10 knots in turns).
In Flight Simulator, rudder pedals (twist the joystick, use the rudder pedals, or press 0 [left] or ENTER [right] on the numeric keypad) are used for directional control during taxiing. Avoid stopping the 737 during turns, as excessive thrust is required to get moving again.
Flaps
The following table lists recommended maneuvering speeds for various flap settings. The minimum flap-retraction altitude is 400 feet, but 1,000 feet complies with most noise abatement procedures. When extending or retracting the flaps, use the next appropriate flap setting depending on whether you’re slowing down or speeding up.
Flap Position
Flaps Up 210
Flaps 1 190
Flaps 5 170
Flaps 10 160
Flaps 30 130
Flaps 40 120
In adverse weather conditions, taxi with the wing flaps up and then set takeoff flaps during your Before Takeoff checklist procedure. Likewise, retract the flaps as soon as practicable upon landing.
Flaps are generally not used on the 737–800 for the purpose of increasing the descent rate during the descent or approach phases of flight. Normal descents are made in the clean configuration to pattern or Initial Approach Point (IAP) altitude.
Takeoff
All of the following occurs quite rapidly. Read through the procedure several times before attempting it in the plane so you know what to expect.
Run through the Before Takeoff checklist and set flaps to 5 (press F7, or click the flap lever on the panel).
With the aircraft aligned with the runway centerline, advance the throttles (press F3, or drag the throttle levers) to approximately 60 percent N1. This allows the engines to spool up to a point where uniform acceleration to takeoff thrust will occur on both engines. The exact amount of initial setting is not as important as setting symmetrical thrust.
As the engines stabilize (this occurs quickly), advance the thrust levers to takeoff thrust—less than or equal to 100 percent N1. Final takeoff thrust should be set by the time the aircraft reaches 60 KIAS. Directional control is maintained by use of the rudder pedals (twist the joystick, use the rudder pedals, or press 0 [left] or ENTER [right] on the numeric keypad).
Below about 80 KIAS, the momentum developed by the moving aircraft is not sufficient to cause difficulty in stopping the aircraft on the runway.
V1, approximately 145 KIAS, is decision speed. Above this speed, it may not be possible to stop the aircraft on the runway in case of a rejected takeoff (RTO).
At Vr, approximately 145 KIAS, smoothly pull the stick (or yoke) back to raise the nose to 8 degrees above the horizon. Hold this pitch attitude and be careful not to over-rotate (doing so before liftoff could cause a tail strike).
At V2, approximately 150 to 155 KIAS, the aircraft has reached its takeoff safety speed. This is the minimum safe flying speed if an engine fails. Hold this speed until you get a positive rate of climb.
As soon as the aircraft is showing a positive rate of climb on liftoff (both vertical speed and altitude are increasing), retract the landing gear (press G, or drag the landing gear lever). The aircraft will quickly accelerate to V2+10. A pitch attitude of 15-17 degrees nose up will maintain V2+10 or greater during the climb.
At 1,000 ft (305 m), reduce flaps from 5 to 1 (press F6, or drag the flaps lever). Lower the pitch slightly and accelerate to 210 KIAS, at which point you can go to flaps up (press F6 again).
Climb
As you retract the flaps, set climb power of approximately 90 percent N1 (press F2, use the throttle control on your joystick, or drag the thrust levers). Maintain 6 or 7 degrees nose-up pitch attitude to climb at 250 kts until reaching 10,000 feet (3,048 meters), and then maintain 280 KIAS to your cruising altitude.
Cruise
Cruise altitude is normally determined by winds, weather, and other factors. You might want to use these factors in your flight planning if you have created weather systems along your route. Optimum altitude is the altitude that gives the best fuel economy for a given configuration and gross weight. A complete discussion about choosing altitudes is beyond the scope of this section.
When climbing or descending, take 10 percent of your rate of climb or descent and use that number as your target for the transition. For example, if you’re climbing at 1500 fpm, start the transition 150 feet below the target altitude.
You’ll find it’s much easier to operate the Boeing 737–800 in climb, cruise, and descent if you use the autopilot. The autopilot can hold the altitude, speed, heading, or navaid course you specify. For more information on using the autopilot, see Using an Autopilot.
Normal cruise speed is Mach 0.785 (at 35,000 feet). You can set .78 in the autopilot Mach hold window and engage the Hold button (click the Mach button). Set the A/T Arm (click the switch to engage the autothrottles), and the autothrottles will set power at the proper percent to maintain this cruise speed. The changeover from indicated airspeed to Mach number typically occurs as you climb to altitudes of 20,000 to 30,000 feet (6,000 to 9,000 meters).
Remember that your true airspeed is actually much higher in the thin, cold air. You’ll have to experiment with power settings to find the setting that maintains the cruise speed you want at the altitude you choose.
Descent
A good descent profile includes knowing where to start down from cruise altitude and planning ahead for the approach. Normal descent is done with idle thrust and clean configuration (no speed brakes). A good rule for determining when to start your descent is the 3-to-1 rule (three miles distance per thousand feet in altitude). Take your altitude in feet, drop the last three zeros, and multiply by 3.
For example, to descend from a cruise altitude of 35,000 feet (10,668 meters) to sea level:
35,000 minus the last three zeros is 35.
35 x 3=105
This means you should begin your descent 105 nautical miles from your destination, maintaining a speed of 250 KIAS (about 45 percent N1) and a descent rate of 1,500 to 2,000 feet per minute, with thrust set at idle. Add two extra miles for every 10 knots of tailwind.
To descend, disengage the autopilot if you turned it on during cruise, or set the airspeed or vertical speed into the autopilot and let it do the flying for you. Reduce power to idle, and lower the nose slightly. The 737–800 is sensitive to pitch, so ease the nose down just a degree or two. Remember not to exceed the regulation speed limit of 250 KIAS below 10,000 feet (3,048 meters). Continue this profile down to the beginning of the approach phase of flight.
Deviations from this procedure can result in arriving too high at the destination (requiring circling to descend) or arriving too low and far out (requiring expenditure of extra time and fuel). Plan to have an initial approach fix regardless of whether or not you’re flying an instrument approach.
It takes about 35 seconds and 3 miles (5.5 kilometers) to decelerate from 290 KIAS to 250 KIAS in level flight without speed brakes. It takes another 35 seconds to slow to 210 KIAS. Plan to arrive at traffic-pattern altitude at the flaps-up maneuvering speed about 12 miles out when landing straight-in, or about eight miles out when entering a downwind approach. A good crosscheck is to be at 10,000 feet AGL (3,048 meters), 30 miles (55.5 kilometers) from the airport at 250 KIAS.
Approach
Have your aircraft configuration (flaps and landing gear) set and establish your target speed well ahead. Excess speed in the –800 will require a level flight segment to slow down.
If you’re high coming into the approach, you can use the speed brakes to increase descent. If possible, avoid using the speed brakes to increase descent when wing flaps are extended. Do not use speed brakes below 1,000 feet AGL.
On an instrument approach, you want to be configured for landing and establish approach speed by the final approach fix (where you intercept the glideslope), usually about five miles from touchdown.
Set flaps to 1 (press F7, or drag the flaps indicator or lever) when airspeed is reduced below the minimum flaps-up maneuvering speed. Normally, this would be when entering the downwind leg or at the initial approach fix, so you should be at the desired airspeed by this point. You can then continue adding flaps as you get down to the speed limits for each setting.
Flaps 30 or 40 is the setting for normal landings.
Intercept the glideslope from below, and extend the landing gear (press G, or drag the landing gear lever) when the glideslope needle is less than or equal to one dot high.
The proper final approach speed varies with weight, but a good target at typical operating weight is 140 KIAS.
With landing gear down and flaps at 30 degrees, set the power to maintain 140. This configuration should hold airspeed with a good descent angle toward the runway. Use small power adjustments and pitch changes to stay on the glidepath. You’re looking for a descent rate of about 700 fpm.
Before landing, make sure the speed brake handle is in the ARM position.
Landing
Select a point about 1,000 feet (305 meters) past the runway threshold, and aim for it. Adjust your pitch so that the point remains stationary in your view out the windscreen.
At 50 feet (15 meters) above the runway, reduce the throttles to idle. As the threshold goes out of sight beneath you, shift the visual sighting point to about ¾ down the runway. At 30 feet (9 meters) above the runway, initiate a flare by raising the nose about 5 degrees and fly the airplane onto the runway.
To assure adequate aft fuselage clearance on landing, fly the airplane onto the runway at the desired touchdown point. DO NOT hold the airplane off the runway for a soft landing.
When the main gear touch, apply the brakes smoothly (press the PERIOD key, or press Button 1—typically the trigger—on the joystick).
If you armed the spoilers, they will deploy automatically. If not, move the brake lever into the UP position now. Add reverse thrust (press F2, or drag the thrust levers into reverse). Make sure you come out of reverse thrust when airspeed drops below 60 knots.
Once you’re clear of the runway and as you taxi to the terminal, retract the flaps (press F5, or drag the flaps lever) and lower the spoilers (press the SLASH [ / ], or click the brake lever).